Acrich

Application Note:

Circuit Design for SAW8KG0B

SAW8KG0B

Description

This surface-mount LED comes in standard package dimension. It has a substrate made up of a molded plastic reflector sitting on top of a bent lead frame. The die is attached within the reflector Cavity and the cavity is encapsulated by silicone.

The package design coupled with careful selection of component materials allow these products to perform with high reliability.

Features

- White colored SMT package.
- Pb-free RefloW Soldering
- Suitable for all SMT
- Lead Free and RoHS compliant

Applications

- Interior lighting
- General lighting
- Indoor and out door displays
- Architectural / Decorative lighting

Contents

1. SAW8KG0B Information

1.1 Description --3
1.2 Mechanical Dimension ---3
1.3 Characteristics --4
2. Driver Configurations

2.3 Capacitive Circuits ---7

1. SAW8KG0B Information

1.1 Description

The SAW8KGOB emitter is designed to operate of rectified high voltage AC. The SAW8KGOB contains a high brightness, high voltage LED chip array and connects the LED chip to the anode and cathode of the package. Each SAW8KG0B emitter contains a zener diode to provide ESD protection.

Figure 1. SAW8KG0B (left) and Circuit Diagram

1.2 Mechanical Dimensions

(Tolerance: ± 0.1, Unit: mm)
Figure 2. SAW8KG0B mechanical dimensions(mm)

1. SAW8KG0B Information

1.3 Characteristics

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Forward Voltage*	V_{F}	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	20.7	22	23	V
Reverse Voltage	V_{R}	$\mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA}$	0.7	-	-	V
Luminous Intensity*[1] (3700~7000K)	I_{V}	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	-	13.8 (42.8)	-	cd (Im)
Luminous Intensity*[1] (2600~3700K)	I_{V}	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	10.9	12.2 (37.8)	-	C
Color Correlated Temperature	CCT	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	2,600	-	7,000	K
Viewing Angle ${ }^{[2]}$	$2 \Theta_{1 / 2}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	-	115	-	deg.
Color Rendering Index*	Ra	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	80	82	90	-
ESD (HBM)	$\mathrm{R}_{\mathrm{th}} \mathrm{JS}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	-	27	-	K / W
Thermal resistance ${ }^{[3]}$		5	-	-	KV	

[1] The luminous intensity IV was measured at the peak of the spatial pattern which may not be aligned with the mechanical axis of the LED package.
[2] $2 \theta_{1 / 2}$ is the off-axis where the luminous intensity is $1 / 2$ of the peak intensity.
[3] Thermal resistance: RthJS (Junction / solder)

* Tolerance : VF $: \pm 0.4 \mathrm{~V}$, Iv $: \pm 7 \%, \operatorname{Ra}: \pm 2, x, y: \pm 0.01$
[Note] All measurements were made under the standardized environment of SSC.
Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power Dissipation $*[1]$	P_{d}	0.58	W
Forward Current	I_{F}	25	mA
Operating Temperature	$\mathrm{T}_{\mathrm{opr}}$	$-30 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+100$	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$

[1] Care is to be taken that power dissipation does not exceed the absolute maximum rating of the product.

* LED's properties might be different from suggested values like above and below tables if operation condition will be exceeded our parameter range.

2. Driver Configurations

2.1 Description

The SAW8KG0B emitter is designed to operate directly off of AC line power(e.g 120Vac, 230Vac) with a rectifier, linear circuits or capacitive circuits or switching circuits.

2.2 Linear Circuit

A) Resistor Driving Circuit

It is better to use higher than rated power resistors for reliability. The rated power of the resistor should be chosen based on the equation $\operatorname{Irms}(\mathrm{A}) * \operatorname{Irms}(\mathrm{~A}) *$ Resistor value(ohms). The normal power rating of a 3216 size resistor is 0.25 W . If the power consumption in one resistor exceeds the rated power of the resistor it is suggested to use multiple resistors in parallel.

(a) Series configuration

(b) Parallel configuration

Figure 3. Resistor driving circuit for 100~120Vac

Table 1. Resistor values in Figure 3-(a)

Input Voltage	Power dissipation	LED\#	Target Drive Current	VF bins		
				A	B	C
100 Vac	2 W	5 ea	20 mA , rms	630Ω	480Ω	330Ω
110 Vac	2 W	5 ea	20 mA , rms	1060Ω	910Ω	760Ω
120 Vac	2 W	5 ea	20 mA , rms	1510Ω	1360Ω	1210Ω

Table 2. Resistor values in Figure 3-(b)

Input Voltage	Power dissipation	LED\#	Target Drive Current	VF bins		
				B	C	
100 Vac	4 W	10 ea	$40 \mathrm{~mA}, \mathrm{rms}$	315Ω	240Ω	165Ω
110 Vac	4 W	10 ea	$40 \mathrm{~mA}, \mathrm{rms}$	530Ω	455Ω	380Ω
120 Vac	4 W	10 ea	$40 \mathrm{~mA}, \mathrm{rms}$	755Ω	680Ω	605Ω

Figure 4. Resistor driving circuit for 220Vac

Table 3. Resistor values in Figure 4.

Input Voltage	Power dissipation	LED\#	Target Drive Current	VF bins		
				A	B	C
220 Vac	4 W	10ea	$20 \mathrm{~mA}, \mathrm{rms}$	2200Ω	1900Ω	1600Ω
230 Vac	4 W	10ea	$20 \mathrm{~mA}, \mathrm{rms}$	2640Ω	2340 ת	2040 ת
240 Vac	4 W	10ea	$20 \mathrm{~mA}, \mathrm{rms}$	3080Ω	2780Ω	2480Ω

2.3 Capacitive Circuit

SAW8KG0B can be operated in three additional optional configurations if higher efficiency or less flicker is needed. These capacitive configurations can lower power factor as seen in Table 4. The three different capacitive configurations consist of a bridge diode, resistor, and capacitor(s).

Optional Configuration \#1 : output resistor + output capacitor(parallel)
Optional Configuration \#2 : Input capacitor(series) + output resistor
Optional Configuration \#3 : Input capacitor(series) + output capacitor(parallel) + output resistor
Table 4 shows detail circuit characteristic of four configurations that are operated in $\mathbf{2 3 0 V a c} / \mathbf{5 0 H z}$.

	Standard AC Drive	Optional Configuration \#1	Optional Configuration \#2	Optional Configuration \#3
LED VF rank	10 ea	10 ea	10 ea	10 ea
Vin	230 Vac	C	C	C
Frequency	50 Hz	230 Vac	230 Vac	230 Vac
Rout	2040Ω	50 Hz	50 Hz	50 Hz
Cin	N / A	4750Ω	100Ω	390Ω
Cout	N / A	N / A	550 nF	1130 nF
LED current	$20 \mathrm{~mA}, \mathrm{rms}$	47 uF	N / A	47 uF
Input current	$20 \mathrm{~mA}, \mathrm{rms}$	$100 \mathrm{~mA}, \mathrm{rms}$	$20 \mathrm{~mA}, \mathrm{rms}$	$40 \mathrm{~mA}, \mathrm{rms}$
Pin	4.16 W	6.52 W	3.23 W	4.71 W
$\mathrm{P}_{\text {led }}$	3.33 W	4.54 W	3.17 W	4.53 W
Effciency $\left(\mathrm{P}_{\text {led }} / \mathrm{P}_{\text {in }}\right)$	80.15%	69.56%	98.19%	100 Hz
Noticeable flicker	100 Hz	no	0.70	n
PF	0.90	0.28	0.51	

Figure 5. Current waveforms of different circuit configurations

Optional circuit configuration\#1: This adds an output capacitor to the standard circuit. This configuration has no flicker. The current shape through the SAW8KGOB package is similar to DC Current, as seen in Figure 6. Input current and LED current are not the same value. The target Drive current indicates LED current through SAW8KG0B PKG. There is no difference in resistor values between 50 Hz and 60 Hz of frequency.

Figure 6. Optional capacitive drive circuit configuration\#1

Table 5. Resistor and capacitor values in Figure 6

Input Voltage	Frequency	LED\#	Target Drive Current ($\mathrm{I}_{\text {Led, }}$ not I_{in})	Cp	Rseries for VF bins		
					A	B	C
220 Vac	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$	10 ea	20 mA , rms	47 uF	4650Ω	4350Ω	4050 ת
230 Vac	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$	10 ea	20 mA , rms	47 uF	5350Ω	5050Ω	4750Ω
240 Vac	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$	10 ea	20 mA , rms	47 uF	6050Ω	5750Ω	5450Ω
100 Vac	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$	5 ea	$20 \mathrm{~mA}, \mathrm{rms}$	100 uF	1580Ω	1430Ω	1280 ת
110 Vac	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$	5 ea	20 mA ,rms	100 uF	2290 ת	2140Ω	1990 ת
120 Vac	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$	5 ea	$20 \mathrm{~mA}, \mathrm{rms}$	100 uF	2990 ת	2840Ω	2690 ת

Optional circuit configuration\#2: This adds an input capacitor to the standard circuit. This Configuration has the same current shape through the 5630 package as the standard AC drive (as seen in Figure 7), but since it can only drive one LED string it is very suitable for compact designs. Additionally the circuit efficiency is very high. You can also improve efficiency a little by eliminating the output resistor(Rout), but SSC recommends using Rout for surge immunity.

Figure 7. Optional capacitive drive circuit configuration\#2

Table 6. Resistor and capacitor values in Figure 7 (220Vac)

Input Voltage	Frequency	LED\#	Target Drive Current ($\mathrm{I}_{\text {LED }}=\mathrm{I}_{\text {in }}$)	Rs	Cs for VF bins		
					A	B	C
220 Vac	50 Hz	10 ea	$20 \mathrm{~mA}, \mathrm{rms}$	100Ω	560 nF	590 nF	640 nF
	60 Hz	10 ea	$20 \mathrm{~mA}, \mathrm{rms}$	100Ω	470 nF	490 nF	530 nF

Table 7. Resistor and capacitor values in Figure 7 (220Vac)

Input Voltage	Frequency	LED\#	Target Drive Current ($\mathrm{I}_{\text {LED }}=\mathrm{I}_{\text {in }}$)	Rs	Cs for VF bins		
					A	B	C
230 Vac	50 Hz	10 ea	20 mA ,rms	100Ω	500 nF	520 nF	550 nF
	60 Hz	10 ea	20 mA ,rms	100Ω	420 nF	430 nF	460 nF

Table 8. Resistor and capacitor values in Figure 7 (100~120 Vac)

Input Voltage	Frequency	LED\#	Target Drive Current $\left(\mathrm{I}_{\text {LED }}=\mathrm{I}_{\text {in }}\right)$	Rs	Cs for VF bins		
					A	B	C
100Vac	50 Hz	5 ea	$20 \mathrm{~mA}, \mathrm{rms}$	100Ω	1600 nF	1850 nF	2340 nF
	60 Hz	5 ea	20 mA , rms	100Ω	1340 nF	1550 nF	1950 nF
110 Vac	50 Hz	5 ea	20 mA , rms	100Ω	1150 nF	1230 nF	1330 nF
	60 H	5 ea	20 mA , rms	100Ω	960 nF	1020 nF	1110 nF
120 Vac	50 Hz	5 ea	$20 \mathrm{~mA}, \mathrm{rms}$	100Ω	920 nF	950 nF	1000 nF
	60 Hz	5 ea	$20 \mathrm{~mA}, \mathrm{rms}$	100Ω	760 nF	800 nF	930 nF

Acrich

Optional circuit configuration\#3: This adds an input capacitor and output capacitor to the
standard circuit. This configuration has no flicker and the current shape through the 5630 package is similar to DC current, as seen in Figure 8. This means we get a combination of configurations \#1 \& 2, higher efficiency and no flicker issues.

Figure 8. Optional capacitive drive circuit configuration\#3
Table 9. Resistor and capacitor values in Figure 8 (220Vac)

Input Voltage	Frequency	LED\#	Target Drive Current ($\mathrm{I}_{\text {Led, }}$ not $\mathrm{I}_{\text {in }}$)	Cp	Rs	Cs for VF bins		
						A	B	C
220 Vac	50 Hz	10 ea	20 mA ,rms	47 uF	390Ω	1160 nF	1250 nF	1350 nF
	60 Hz	10 ea	$20 \mathrm{~mA}, \mathrm{rms}$	47 uF	390Ω	960 nF	1040 nF	1120 nF

Table 10. Resistor and capacitor values in Figure 8 (230Vac)

Input Voltage	Frequency	LED\#	Target Drive Current (Iled, not $\mathrm{I}_{\text {in }}$)	Cp	Rs	Cs for VF bins		
						A	B	C
230 Vac	50 Hz	10 ea	$20 \mathrm{~mA}, \mathrm{rms}$	47 uF	390Ω	990 nF	1060 nF	1130 nF
	60 Hz	10 ea	$20 \mathrm{~mA}, \mathrm{rms}$	47 uF	390Ω	830 nF	880 nF	940 nF

Table 11. Resistor and capacitor values in Figure 8 (110~120Vac)

Input Voltage	Frequency	LED\#	Target Drive Current ($\mathrm{I}_{\text {Led, }}$ not $\mathrm{I}_{\text {in }}$)	Cp	Rs	Cs for VF bins		
						A	B	C
110 Vac	50 Hz	5 ea	$20 \mathrm{~mA}, \mathrm{~ms}$	100 uF	200Ω	2360 nF	2550 nF	2770 nF
	60 Hz	5 ea	$20 \mathrm{~mA}, \mathrm{rms}$	100 uF	200Ω	1970 nF	2120 nF	2300 nF
120 Vac	50 Hz	5 ea	$20 \mathrm{~mA}, \mathrm{rms}$	100 uF	200Ω	1780 nF	1890 nF	2010 nF
	60 Hz	5 ea	$20 \mathrm{~mA}, \mathrm{rms}$	100 uF	200Ω	1480 nF	1570 nF	1640 nF

